创见|实干|卓越
与光同程,做民族仪器企业

光解水water-splitting reaction

Labsolar-IIIAG 在线光催化分析系统

Labsolar-IIIAG On-line photocatalytic analysis system

产品中心:光解水品牌:泊菲莱浏览量:1613
Labsolar-IIIAG 在线光催化分析系统全玻璃材质,从根本上杜绝金属吸附对实验结果造成的误差;磁力循环气泵,系统中无电线接入,无氢爆风险,不产生电解水析氢干扰。
  • 产品介绍
  • 应用领域
  • 文献
  • 技术维护

关键特征

● 经典的结构设计,众多的使用客户,超高的性价比;

● 全玻璃材质,从根本上杜绝金属吸附对实验结果造成的误差;

● 双七通取样结构,杜绝载气误抽;

● 磁力循环气泵,系统中无电线接入,无氢爆风险,不产生电解水析氢干扰。

 

应用领域

▲特别适用   ●较为适用  ○可以使用

▲光催化/光电催化分解水制氢/氧

▲光催化/光电催化全分解水

▲光催化/光电催化CO2还原

▲光催化量子效率测量

 

气体循环参数

● 标准曲线线性:H2含量为100 μL~10 mL范围时,R2>0.999;

● 重复性:同一浓度连续四次进样,RSD<3%;

● 无源磁力高速循环系统:驱动转速不低于4000 r/min,循环动力强劲 ;管路中无电线接入,无氢爆风险,不产生电解水析氢干扰;

● 取样方式:手动在线取样,带定量环多通取进样阀门为高硼硅玻璃材质,位于系统而非色谱;

● 循环管路:最窄管路为内径为3 mm,非小口径色谱管路,气体阻力小;

系统管路参数

● 绝压真空度:≤0.1 MPa;

● 使用压力范围:0 kPa~常压;

● 气密性:相对压力变化≤1 kPa/24 h;

● 管路材质:高硼硅玻璃,高化学惰性,无吸附;

● 阀门工艺:高硼硅玻璃材质,阀塞与阀套采用对磨精磨工艺;

● 阀门数量:13;

● 真空脂:进口道康宁真空脂,耐化学品的侵蚀,低蒸汽压力,低挥发性,工作温度:-40℃~200℃;

● 管路体积:150 mL;

● 定量环:1.5 mL;

● 储气瓶:250 mL,适用系统扩容和反应气如二氧化碳的存储;

● 冷凝管:球形冷凝管,避免水蒸气进入气相色谱仪和真空泵;

● 冷阱:分离低沸点组分,延长真空泵使用寿命,提高系统真空度;

外观结构及其他外设

● 反应器:可适配光催化反应器、光电催化反应器 ;可根据实际实验需求定制;

● 整机尺寸/mm:650 (L)×370 (W)×730 (H);

● 开放式设计:高度可根据实验需求进行调节;

● 光电隔离:输入输出部分均有光电隔离,抗干扰能力强;

● 真空泵:单级旋片式真空泵,抽速≥6L/s;

 

代表文献

大连化物所李灿院士团队引用Labsolar-IIIAG光催化反应系统

哈尔滨工业大学陈刚团队引用IIIAG系统

  • [1] P. Li, G. Luo, S. Zhu, et al., Unraveling the selectivity puzzle of H2 evolution over CO2 photoreduction using ZnS nanocatalysts with phase junction, Applied Catalysis B: Environmental, 2020, 274, 119115.
  • [2] Q. Zhu, B. Qiu, M. Du, et al., Dopant-Induced Edge and Basal Plane Catalytic Sites on Ultrathin C3N4 Nanosheets for Photocatalytic Water Reduction, ACS Sustainable Chemistry & Engineering, 2020, 8, 7497-7502.
  • [3] G. Huang, Z. Xiao, W. Zhen, et al., Hydrogen production from natural organic matter via cascading oxic-anoxic photocatalytic processes: An energy recovering water purification technology, Water Res, 2020, 175, 115684.
  • [4] Guo W, Qin Y, Liu C, et al. Unveiling the intermediates/pathways towards photocatalytic dechlorination of 3,3′,4,4′-trtrachlorobiphenyl over Pd /TiO2(B) nanosheets[J]. Applied Catalysis B Environmental, 2021, 298:120526.
  • [5] M. Li, J.X. Sun, G. Chen, S.Y. Yao, B.W. Cong, Construction double electric field of sulphur vacancies as medium ZnS/Bi2S3-PVDF self-supported recoverable piezoelectric film photocatalyst for enhanced photocatalytic performance, Appl. Catal. B: Environ. 2022, 31, 120792-120804.  httpsdoi.org10.1016j.apcatb.2021.120792.pdf.
  • [6] Z. Liu, J. Zhang, Y. Wan, J. Chen, Y. Zhou, J. Zhang, G. Wang, R. Wang, Donor-Acceptor structural polymeric carbon nitride with in-plane electric field accelerating charge separation for efficient photocatalytic hydrogen evolution, Chemical Engineering Journal 430 (2022) 132725.
  • [7] Yu-Qin Xing, Long Chen and Shi-Yong Liu et. al. In situ C-H activation-derived polymer@TiO2 p-n heterojunction for photocatalytic hydrogen evolution. Sustainable Energy Fuels, 2021, Advance Article.
  • [8] pH-induced hydrothermal synthesis of Bi2WO6 nanoplates with controlled crystal facets for switching bifunctional photocatalytic water oxidation/reduction activity, Journal of Colloid and Interface Science 602 (2021) 868-879.
  • [9] YukeShen,DekangLi,YuyingDang,JiaweiZhang,WeiWang,BaojunMa.A ternary calabash model photocatalyst (Pd/MoP)/CdS for enhancing H2 evolution under visible light irradiation.Applied Surface Science,2021, 150432.
  • [10] J. Cai, A. Cao, Z. Wang, S. Lu, Z. Jiang, X.-Y. Dong, X. Li, S.-Q. Zang, Surface oxygen vacancies promoted Pt redispersion to single-atom for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A 2021, DOI: 10.1039/D1TA01400E.
  • [11] Enhancing the photocatalytic water splitting of graphitic carbon nitride by hollow anatase titania dielectric resonators. Journal of Colloid and Interface Science, 2021, 598, 14-23.
  • [12] Zhu L, Wu Y, Wu S, et al. Tuning the Active Sites of Atomically Thin Defective Bi12O17Cl2 Via Incorporation of Subnanometer Clusters[J]. Acs Appl. Mater. Interfaces, 2021.
  • [13]  W. Li, X. Wang, M. Li, S. He, Q. Ma, X. Wang. Construction of Z-scheme and p-n heterostructure: Three-dimensional porous g-C3N4/graphene oxide-Ag/AgBr composite for high-efficient hydrogen evolution. Appl. Catal. B-Environ. 268 (2020) 118384.
  • [14]  Yanbin Huang, Jun Liu, Chao Zhao et. al. Facile Synthesis of Defect-Modified Thin-Layered and Porous g‑C3N4 with Synergetic Improvement for Photocatalytic H2 Production. ACS Appl. Mater. Interfaces, 2020, 12, 52603−52614.
  • [15]  Bin Zeng,Shengyang Wang,Yuying Gao,Guanna Li,Wenming Tian,Jittima Meeprasert,Hao Li,Huichen Xie,Fengtao Fan,Rengui Li,Can Li,Interfacial Modulation with Aluminum Oxide for Efficient Plasmon-Induced Water Oxidation,Advanced Functional Materials,2020 05688.
  • [16]  Zhi-Rong Tan, Yu-Qin Xing,Jing-Zhao Cheng, Guang Zhang, Zhao-Qi Shen, Yu-Jie Zhang, Guangfu Liao,  Long Chen  and Shi-Yong Liu,EDOT-based conjugated polymers accessed via C–H direct arylation for efficient photocatalytic hydrogen production,Chem. Sci., 2022, 13, 1725
相关产品推荐