关键特征
● 经典的结构设计,众多的使用客户,超高的性价比;
● 全玻璃材质,从根本上杜绝金属吸附对实验结果造成的误差;
● 双七通取样结构,杜绝载气误抽;
● 磁力循环气泵,无电线接入,无氢爆风险。
应用领域 ▲特别适用 ●较为适用 ○可以使用
● 光催化分解水制氢/氧 ● 光催化全分解水 ● 光催化CO2还原
● 光降解气体污染物(如VOCs 、甲醛、氮氧化物、硫氧化物等)
○ 光催化量子效率测量 ○ 膜光催化 ○ PEC光电化学
技术参数
真空度
-0.1 MPa(24 h以上,动态气密性测试);
气密性
相对压力变化:≤1 kPa(24 h);
所有阀门均采用高硼硅玻璃材质,阀塞与阀套采用对磨精磨工艺,保证阀塞与阀套的匹配性;
循环效率
纯磁力高速循环系统:驱动转速>4000 r/min;
内径:循环管路,包括定量环,窄管路内径为3 mm,气体阻力小;
线性及重复性
标准曲线线性回归度:系统内氢气含量为100 μL~10 mL范围时R2 > 0.9995;
同一浓度三次采样,RSD ≤ 3%;
其他结构
定量环为高硼硅玻璃材质,位于多通取样阀上(非色谱取样阀);
不锈钢支撑架,650 mm(L)×370 mm(W)×730 mm(H),高度可调节;
具有多通进/取样器;
真空硅胶软管,抗老化性好、减少系统震动量;
多功能定量缓冲储气瓶装置;(适用系统体积标定和反应气如二氧化碳的存储);
输入输出部分均有光电隔离,抗干扰能力强;
便携式免安装系统;(无需提供氧气、液化气,进行现场明火烧接)。
代表文献
[1] P. Li, G. Luo, S. Zhu, et al., Unraveling the selectivity puzzle of H2 evolution over CO2 photoreduction using ZnS nanocatalysts with phase junction, Applied Catalysis B: Environmental, 2020, 274, 119115.
[2] Q. Zhu, B. Qiu, M. Du, et al., Dopant-Induced Edge and Basal Plane Catalytic Sites on Ultrathin C3N4 Nanosheets for Photocatalytic Water Reduction, ACS Sustainable Chemistry & Engineering, 2020, 8, 7497-7502.
[3] G. Huang, Z. Xiao, W. Zhen, et al., Hydrogen production from natural organic matter via cascading oxic-anoxic photocatalytic processes: An energy recovering water purification technology, Water Res, 2020, 175, 115684.
[4] Guo W, Qin Y, Liu C, et al. Unveiling the intermediates/pathways towards photocatalytic dechlorination of 3,3′,4,4′-trtrachlorobiphenyl over Pd /TiO2(B) nanosheets[J]. Applied Catalysis B Environmental, 2021, 298:120526.
[5] M. Li, J.X. Sun, G. Chen, S.Y. Yao, B.W. Cong, Construction double electric field of sulphur vacancies as medium ZnS/Bi2S3-PVDF self-supported recoverable piezoelectric film photocatalyst for enhanced photocatalytic performance, Appl. Catal. B: Environ. 2022, 31, 120792-120804. httpsdoi.org10.1016j.apcatb.2021.120792.pdf.
[6] Z. Liu, J. Zhang, Y. Wan, J. Chen, Y. Zhou, J. Zhang, G. Wang, R. Wang, Donor-Acceptor structural polymeric carbon nitride with in-plane electric field accelerating charge separation for efficient photocatalytic hydrogen evolution, Chemical Engineering Journal 430 (2022) 132725.
[7] Yu-Qin Xing, Long Chen and Shi-Yong Liu et. al. In situ C-H activation-derived polymer@TiO2 p-n heterojunction for photocatalytic hydrogen evolution. Sustainable Energy Fuels, 2021, Advance Article.
[8] pH-induced hydrothermal synthesis of Bi2WO6 nanoplates with controlled crystal facets for switching bifunctional photocatalytic water oxidation/reduction activity, Journal of Colloid and Interface Science 602 (2021) 868-879.
[9] YukeShen,DekangLi,YuyingDang,JiaweiZhang,WeiWang,BaojunMa.A ternary calabash model photocatalyst (Pd/MoP)/CdS for enhancing H2 evolution under visible light irradiation.Applied Surface Science,2021, 150432.
[10] J. Cai, A. Cao, Z. Wang, S. Lu, Z. Jiang, X.-Y. Dong, X. Li, S.-Q. Zang, Surface oxygen vacancies promoted Pt redispersion to single-atom for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A 2021, DOI: 10.1039/D1TA01400E.
[11] Enhancing the photocatalytic water splitting of graphitic carbon nitride by hollow anatase titania dielectric resonators. Journal of Colloid and Interface Science, 2021, 598, 14-23.
[12] Zhu L, Wu Y, Wu S, et al. Tuning the Active Sites of Atomically Thin Defective Bi12O17Cl2 Via Incorporation of Subnanometer Clusters[J]. Acs Appl. Mater. Interfaces, 2021.
[13] W. Li, X. Wang, M. Li, S. He, Q. Ma, X. Wang. Construction of Z-scheme and p-n heterostructure: Three-dimensional porous g-C3N4/graphene oxide-Ag/AgBr composite for high-efficient hydrogen evolution. Appl. Catal. B-Environ. 268 (2020) 118384.
[14] Yanbin Huang, Jun Liu, Chao Zhao et. al. Facile Synthesis of Defect-Modified Thin-Layered and Porous g‑C3N4 with Synergetic Improvement for Photocatalytic H2 Production. ACS Appl. Mater. Interfaces, 2020, 12, 52603−52614.
[15] Bin Zeng,Shengyang Wang,Yuying Gao,Guanna Li,Wenming Tian,Jittima Meeprasert,Hao Li,Huichen Xie,Fengtao Fan,Rengui Li,Can Li,Interfacial Modulation with Aluminum Oxide for Efficient Plasmon-Induced Water Oxidation,Advanced Functional Materials,2020 05688.
[16] Zhi-Rong Tan, Yu-Qin Xing,Jing-Zhao Cheng, Guang Zhang, Zhao-Qi Shen, Yu-Jie Zhang, Guangfu Liao, Long Chen and Shi-Yong Liu,EDOT-based conjugated polymers accessed via C–H direct arylation for efficient photocatalytic hydrogen production,Chem. Sci., 2022, 13, 1725