您好, 请 登录/注册 创建中国账户
欢迎来到泊菲莱

PCX-50C Discover多通道光催化反应系统

产品中心:多通道光催化反应系统 品牌:泊菲莱 浏览量:2056

关键特征:

● 高通量平行反应装置,可实现1~9个反应位的平行实验;

● 底部受光,光学级石英瓶底,保证入射光的利用率;

● 模块化设计,更新灯盘简单便捷;

● 多波长可选,波长组合可定制;

● 水冷控温,用于筛选温度对实验结果的影响。


应用领域   ▲特别适用 ●较为适用 ○可以使用

▲ 光催化分解水制氢/氧 (可控温)          ▲ 光催化全分解水 (可控温)       

▲ 光催化CO2还原(可控温)               ▲ 光降解液体污染物(如染料、苯及苯系物等)

○ 光催化量子效率测量            ○ PEC光电化学            ○ 光致变色            ○ 光合成                                                                          

○ 光降解气体污染物(如VOCs 、甲醛、氮氧化物、硫氧化物等)


平行性

● 辐照单元采用循环运动模式,避免因各发光体输出光不一致造成的受光不均匀;

● 采用微电脑芯片-机械联动技术,各反应位磁力搅拌速度一致(可调节);

● 受光面均为光学级平面,各反应位光程一致;

● 底部垂直入射,避免因侧曲面入射造成的光通量不一致。


辐照模块

● 额定功率:10 W ×9

● 多波长可选:VLight灯盘(白光);选配365 nm,385 nm,420 nm,450 nm,485 nm,520 nm,595 nm,620 nm,630 nm,760 nm,880 nm,940 nm,并可任意组合);

● 多波长组合任选:可单独定制灯盘灯珠组合形成;

● 各发光体配备有光学透镜,并逐一筛选锁定焦点平面,保证光源输出的一致性与利用率;


反应模块

● 反应位数量:9位;反应位固定,取气样、液样都方便;

● 反应瓶:光学级石英瓶底,标配:50 mL×9;可选:1.5 mL、5 mL、10 mL

             反应瓶(<50 mL)底部具有反光杯,提高入射光的利用率;

● 反应瓶耐压性能:0.05 MPa;

● 多类型可选:普通瓶、镀反光膜高效瓶;

● 高柔性:可通过使用不同类型反应瓶盖实现真空、惰气保护、流动性气氛等不同环境下的光催化反应,可以实现气体样、液体样的检测;

● 瓶盖配置:C1(降解),C2(气密性三孔可配自动取样器)可选;

● 反应瓶加持:反应瓶具有固定夹持功能,可与自动取样装置配合使用;


温控模式

● 控温方式:恒温循环水控温,一体水冷设计;

● 控温范围:10 ℃~80 ℃(低温可定制);

● 控温精度: 0.1 ℃(由循环冷水机控温精度决定) 

● 具有冷凝水收集装置,避免冷凝水对装置的影响;

● 标配冷凝水快插接口,简单易操作。


搅拌方式

● 搅拌方式:光辐照多样品平行反应装置(专利号:201410361142.0);

● 采用微电脑芯片-机械联动,各反应位磁力搅拌速度一致(可调节);

● 搅拌速度:0~500 r/ min。


扩展性

● 可配合前处理装置 AC1000气氛控制器、 PLA-MAC1005多路气氛控制器;

● 可升级以配合自动取样装置PLA-GPA1000全自动进样器。


基础参数

● 工作电压:220 VAC/50 Hz

● 电流:1 A

● 定时开关机功能:1~999 min

● 具有水平校准功能。


代表文献

广东省科学院测试分析研究所汪福宪团队引用多通道50C.png

北京建筑大学王崇臣团队引用PCX-50C Discover多通道光催化反应系统.png

广东省科学院测试分析研究所汪福宪团队引用PCX-50C Discover多通道光催化反应系统.png

[1]Deng Yanchun, Wang Zhijie. Engineering the photocatalytic behaviors of g/C3N4-based metal-Free materials for degradation of a representative antibiotic. Advanced Functional Materials, 2020, 30: 2002353.

[2]Yi Xiaohong, Wang Chongchen. Photocatalysis-activated SR-AOP over PDINH/MIL-88A(Fe) composites for boosted chloroquine phosphate degradation: Performance, mechanism, pathway and DFT calculations. Applied Catalysis B: Environmental, 2021, 293: 120229.

[3]Yuan Huiqing, Han Zhiji. Promoting photocatalytic CO2 reduction with a molecular copper purpurin chromophore. Nature Communications, 2021: 1835. 

[4] W. Huang, X. Wang, W. Zhang, et al., Intraligand charge transfer boosts visible-light-driven generation of singlet oxygen by metal-organic frameworks, Applied Catalysis B: Environmental, 2020, 273, 119087.

[5] Y. Deng, J. Liu, Y. Huang, et al., Engineering the Photocatalytic Behaviors of g/C3N4‐Based Metal‐Free Materials for Degradation of a Representative Antibiotic, Advanced Functional Materials, 2020, 2002353. 

[6] X. Huang, N. Zhu, F. Mao, et al., Novel Au@C modified g-C3N4 (Au@C/g-C3N4) as efficient visible-light photocatalyst for toxic organic pollutant degradation: Synthesis, performance and mechanism insight, Separation and Purification Technology, 2020, 252, 117485.

[7] Q. Chen, Y. Liu, X. Gu, D. Li, D. Zhang, D. Zhang, H. Huang, B. Mao, Z. Kang, W. Shi, Carbon dots mediated charge sinking effect for boosting hydrogen evolution in Cu-In-Zn-S QDs/MoS2 photocatalysts, Appl. Catal. B, 301 (2022).

[8] W. Zou, X.-H. Liu, C. Xue, X.-T. Zhou, H.-Y. Yu, P. Fan, H.-B. Ji, Enhancement of the visible-light absorption and charge mobility in a zinc porphyrin polymer/g-C3N4 heterojunction for promoting the oxidative coupling of amines, Applied Catalysis B: Environmental, 285 (2020) 119863.

[9] Teng Yan, Yuanpeng Wang, Yue Cao, Hua Liu, Zhiliang Jin*,MoC quantum dots embedded in ultra-thin carbon film coupled with 3D porous g-C3N4 for enhanced visible-light-driven hydrogen evolution,Applied Catalysis A: General,2022, 630, 118457.

[10] Liu Q, Cheng H, Chen T, et. al. Boosted CO desorption behaviors induced by spatial dyadic heterostructure in polymeric carbon nitride for efficient photocatalytic CO2 conversion[J]. Applied Catalysis B: Environmental, 2021, 295: 120289.

[11] Huang, W.G.; Wang, X.Z.; Zhang, W.T.; Zhang, S.J.*; Tian, Y.X.; Chen, Z.H.; Fang, W.H.; Ma, J.* Intraligand charge transfer boosts visible-light-driven generation of singlet oxygen by metal-organic frameworks. Appl. Catal. B: Environ. 2020, 273, 119087.

[12] Huiqing Yuan, Banggui Cheng, Jingxiang Lei, Long Jiang, Zhiji Han, Promoting photocatalytic CO2 reduction with a molecular copper purpurin chromophore. Nature Communications 12, 1835, (2021).

[13] Liu Q, Cheng H, Chen T, etal. Regulating *OCCHO intermediate pathway towards high selective photocatalytic CO2 reduction to CH3CHO over locally crystalized carbon nitride[J]. Energy & Environmental Science, 2021.

[14] Xiao-Hong Yi, Haodong Ji,Chong-Chen Wang*, Yang Li, Yu-Hang Li, Chen Zhao, Ao Wang, Huifen Fu, PengWang, Xu Zhao, Wen Liu*, Photocatalysis-activated SR-AOP over PDINH/MIL-88A(Fe)composites for boosted chloroquine phosphate degradation: performance,mechanism, pathway and DFT calculations,Applied Catalysis B: Environmental.

[15] XianWei,Chong-ChenWang,YangLi,PengWang,QiWei,The Z-scheme NH2-UiO-66/PTCDA composite for enhanced photocatalytic Cr(VI) reduction under low-power LED visible light,Chemosphere, 2021, 130734. 

[16] WentaoZhang,WenguangHuang,JiyuanJin,YonghaiGan,ShujuanZhang,Oxygen-vacancy-mediated energy transfer for singlet oxygen generation by diketone-anchored MIL-125,Applied Catalysis B: Environmental,2021, 120197.