您好, 请 登录/注册 创建中国账户
欢迎来到泊菲莱

Microsolar 300 氙灯光源

Microsolar 300 氙灯光源是泊菲莱科技针对光强衰减制定的实验用氙灯光源,其通过光反馈系统对氙灯电流进行控制调节,实现发光功率长时间稳定的效果。
产品中心:氙灯光源 品牌:泊菲莱 浏览量:6915

关键特征

● 具有恒光辐照度输出(光控)和恒电流输出(程控)两种工作模式;

● 采用光学光反馈技术,实现输出光强的长期稳定输出;

● 采用液晶显示屏,显示相对辐照值、灯泡寿命计时;

● 具有过载过流保护,风扇延时等多种保护功能。


应用领域           ▲特别适用   ●较为适用  ○可以使用

▲ 光催化分解水制氢/氧(长周期)       ▲ 光催化全分解水(长周期)       ▲ PEC光电化学 

● 光降解气体污染物(如VOCs 、甲醛、氮氧化物、硫氧化物等)

● 光降解液体污染物(如染料、苯及苯系物等)

○ 光催化CO2还原       ○ 光合成       ○ 膜光催化       ○ 光致变色


光输出特性

● 总光功率:50 W,可见区19.6 W,紫外区2.6 W

● 光谱范围:320~780 nm (可拓展至320~2500 nm)

● 配合滤光片:紫外光区,可见光区,近红外光区及窄带光

● 光源发散角:平均6°

● 光斑直径:30 mm~60 mm(依照射距离)


光源稳定性

● 直接测量光输出变化的精密光学光反馈系统

● 长周期辐照不稳定性≤±3%(8 h)

● 基于微型CPU的集中数字化供电管理控制

● 实时相对辐照值显示(相对值),定时功能


安全性

● 灯箱 - 电源连接线缆无高压传输特性

● 一种基于集成式氙灯的散热结构( 专利号:201320740323.5)

● 风扇故障保护,风扇关机延时

● 过载过流自动断电防护功能


控制方式

● 工作模式:程控模式,光控模式

● 电流:21 A

● 灯泡(耗材)使用寿命>1000 h( 满足光催化正常条件下的光强度要求 )


基础参数

● 灯泡功率:300 W

● 功率调整范围:150 W~300 W

● 电源纹波:200 mVp-p (峰-峰值)

● 电源纹波:数字电流显示

图表1.jpg

[1] Han Tong, Peng Qing. Anion-exchange-mediated internal electric field for boosting photogenerated carrier separation and utilization. Nature Communications2021, 12: 4952.

[2] Li Yinyin, Xie Tengfeng. Interface engineering Z-scheme Ti-Fe2O3/In2O3 photoanode for highly efficient photoelectrochemical water splitting. Applied Catalysis B: Environmental2021, 290: 120058.

[3] Shu Chang, Jiang Jiaxing. Boosting the photocatalytic hydrogen evolution activity for D-pi-A conjugated microporous polymers by statistical copolymerization. Advanced Materials2021, 33: e2008498.

[4] Wang Wei, Sheng Hua. Photocatalytic C-C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(I)/copper(II). Journal of the American chemical society2021, 143: 2984.

[5] X. Zhang, L. Lin, D. Qu, et al., Boosting visible-light driven solar-fuel production over g-C3N4/tetra(4-carboxyphenyl)porphyrin iron(III) chloride hybrid photocatalyst via incorporation with carbon dots, Applied Catalysis B: Environmental, 2020, 265, 118595.

[6] L. Wang, T. Nakajima, Y. Zhang, Simultaneous reduction of surface, bulk, and interface recombination for Au nanoparticle-embedded hematite nanorod photoanodes toward efficient water splitting, Journal of Materials Chemistry A, 2019, 7, 5258-5265.

[7] H. Liu, L. Li, C. Guo, et al., Thickness-dependent carrier separation in Bi2Fe4O9 nanoplates with enhanced photocatalytic water oxidation, Chemical Engineering Journal, 2020, 385, 123929.

[8] Y. Sheng, H. Miao, J. Jing, et al., Perylene diimide anchored graphene 3D structure via π-π interaction for enhanced photoelectrochemical degradation performances, Applied Catalysis B: Environmental, 2020, 272, 118897.

[9] Lei Wanying, Liu Minghua. Hybrid 0D–2D black phosphorus quantum dots–graphitic carbon nitride nanosheets for efficient hydrogen evolution. Nano Energy2018, 50: 552.

[10] Chang Xiaoxia, Gong Jinlong. Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products. Angewandte Chemie International Edition, 201655: 8840.

[11] Chang Xiaoxia, Gong Jinlong. Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes. Journal of the American chemical society2015, 137: 8356.