您好, 请 登录/注册 创建中国账户
欢迎来到泊菲莱

Labsolar-6A 全玻璃自动在线微量气体分析系统

全玻璃自动在线微量气体分析系统,
产品中心:光解水系统 品牌:泊菲莱 浏览量:58518

关键特征

● 玻璃阀+自动执行器,实现气密性与效率兼顾的目标;

● 集成控制程序,操作简单方便,准确性达科学级水准;

● 测试迅捷,单次采样仅需 10 min(一定负压条件下);

● 兼容性, 可通过更换不同的反应器实现光化学、电化学、PEC光电化学等反应的微量气体检测


应用领域         ▲特别适用   ●较为适用  ○可以使用


▲ 光催化分解水制氢/氧              ▲ 光催化全分解水         ▲ 光催化CO2还原         ▲ 电化学             

▲ 光催化量子效率测量               ▲ PEC光电化学           ▲ 光热催化(负压常压体系)                  

○ 光降解气体污染物(如VOCs 、甲醛、氮氧化物、硫氧化物等)            ○ 膜光催化


典型客户

6A.jpg

你知道Labsolar 6A型号中的6A代表什么意思吗?

表.jpg

技术参数

真空度

真空度:≤ 1.5 kPa,压力示值,避免差压表受大气压、温湿度等因素变化造成的较大数值波动;


气密性

泄漏率:≤ 5×10-5 Pa·L/s ,24 h氧气泄漏量≤1 μmol;

多通复合阀,减小系统体积,主阀传感器自动提示更换真空脂;

阀门工艺:所有阀门均采用高硼硅玻璃材质(无金属部件),阀塞与阀套采用对磨精磨工艺;


循环效率

柱塞泵,在负压(光解水制氢实验)、微负压、常压(二氧化碳还原实验),均能提供优异的循环驱动力。 排气量: 6 mL/次;    

体积:系统循环管路部分体积约为65 mL(不含球冷及反应器),系统富集能力强;

内径:循环管路,包括定量环,窄管路为内径为3 mm,气体阻力小(杜绝管路内径极小带来的气体循环效率低下);

循环系统具有单向阀结构,实现所有管路(包含反应器部分)的单向循环;


线性及重复性

标准曲线线性回归度:系统内氢气含量为100 μL~10 mL范围时R2 > 0.9995;同一浓度三次采样,RSD≤3%。


软件及控制单元

主体集成具有控制程序的4.5英寸TFF彩色液晶显示;

同时支持在线自动控制和手动独立控制两种工作模式;

自动控制模式下,可实时显示阀门位置,具有安全防护预警功能;

内置仪器方法,使用时仅仅需要设置采样周期与采样次数,操作简单;

具有二级加密调试程序,用于设备调试、内部方法设定及资深用户灵活使用。


其他结构

定量环为高硼硅玻璃材质,位于多通取样阀上(非色谱取样阀);

金属防护箱体,对系统玻璃组件、辐射及可能的反应气体泄漏有一定防护作用

具有多通取/进样器;

真空硅胶软管,抗老化性好、减少系统震动量,减少真空泵工作对系统的影响;

多功能定量缓冲储气瓶装置;(适用系统体积标定和反应气如二氧化碳的存储)

输入输出部分均有光电隔离,抗干扰能力强;

便携式免安装系统;(无需提供氧气、液化气,进行现场明火烧接)。


代表文献

华东理工大学李春忠团队引用Labsolar-6A光催化反应系统.png

青岛科技大学李镇江团队引用Labsolar-6A光催化反应系统.png

日本国立物质材料研究所叶金花团队引用Labsolar-6A光催化反应系统.png

陕西师范大学蒋加兴团队引用Labsolar-6A光催化反应系统

陕西师范大学刘生忠团队引用Labsolar-6A光催化反应系统

应化所王颖团队引用Labsolar-6A光催化反应系统

香港城市大学吴永豪团队引用Labsolar-6A光催化反应系统

深圳大学团队引用Labsolar-6A全玻璃微量气体分析系统.png

应用领域: 膜光催化
应用领域: 光降解气体污染物
应用领域: 光热催化(负压常压体系)
应用领域: PEC光电化学
应用领域: 光催化量子效率测量
应用领域: 电化学
应用领域: 光催化二氧化碳还原
应用领域: 光催化全分解水
应用领域: 光催化分解水制氢/氧

[1] Liu Zhihe, Liu Hong. Metallic intermediate phase inducing morphological transformation in thermal nitridation: Ni3FeN-based three-dimensional hierarchical electrocatalyst for water splitting. ACS Applied Materials & Interfaces, 2018, 10: 3699. 

[2] You Feifei, Wang Dan. Lattice distortion in hollow multi-shelled structures for efficient visible-light CO2 reduction with a SnS2/SnO2 Junction. Angewandte Chemie International Edition, 2020, 59: 721. 

[3] Z. Jiang, X. Xu, Y. Ma, et al., Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction, Nature, 2020

[4] Y. Huang, C. Liu, M. Li, et al., Photoimmobilized Ni Clusters Boost Photodehydrogenative Coupling of Amines to Imines via Enhanced Hydrogen Evolution Kinetics, ACS Catalysis, 2020, 10, 3904-3910. 

[5] H. Wang, H. Rong, D. Wang, et al., Highly Selective Photoreduction of CO2 with Suppressing H2 Evolution by Plasmonic Au/CdSe-Cu2O Hierarchical Nanostructures under Visible Light, Small, 2020, 16, 2000426. 

[6] Y. Zhu, X. Ma, Y. Xu, et al., Large dipole moment induced efficient bismuth chromate photocatalysts for wide-spectrum driven water oxidation and complete mineralization of pollutants, National Science Review, 2020, 7, 652-659. 

[7] X. Chen, R. Shi, Q. Chen, et al., Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting, Nano Energy, 2019, 59, 644-650. 

[8] Xu Yangsen, Su Chenliang. Homogeneous carbon/potassium-incorporation strategy for synthesizing red polymeric carbon mitride capable of near-infrared photocatalytic H2 production. Advanced Materials, 2021, 33: e2101455. 

[9] Zhao Yue, Li Can. A Hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts. Angewandte Chemie International Edition, 2020, 59: 9653. 

[10] Cai Mujin, He Le. Greenhouse-inspired supra-photothermal CO2 catalysis. Nature Energy, 2021, 6: 807. 

[11] Changzhi Han, Chong Zhang, Jia-Xing Jiang et. al. A Universal Strategy for Boosting Hydrogen Evolution Activity of Polymer Photocatalysts under Visible Light by Inserting a Narrow-Band-Gap Spacer between Donor and A. Advanced. Functional. Materials 2022, 2109423. 

[12] Hongjun Dong, Yan Zuo, Mengya Xiao, Tingxu Zhou, Shasha Cheng, Gang Chen, Jingxue Sun, Ming Yan,* and Chunmei Li* , Limbic Inducted and Delocalized Effects of Diazole in Carbon Nitride Skeleton for Propelling Photocatalytic Hydrogen Evolution, ACS Appl. Mater. Interfaces 13 (2021) 56273−56284.

[13] Chen, J.; Zhu, X.; Jiang, Z.; Zhang, W.; Ji, H.; Zhu, X.; Song, Y.; Mo, Z.; Li, H.; Xu, H., Construction of brown mesoporous carbon nitride with a wide spectral response for high performance photocatalytic H2 evolution. Inorganic Chemistry Frontiers 2021

[14] Cao X, Zhang L, Guo C, et al. Ni-doped CdS porous cubes prepared from prussian blue nanoarchitectonics with enhanced photocatalytic hydrogen evolution performance [J]. Int J Hydrogen Energ, 2021. https://doi.org/10.1016/j.ijhydene.2021.11.016. 

[15] Wang, X., Wang, X., Tian, W. et al. High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo–N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution.  Applied Catalysis B: Environmental 303 (2022) 120933. 

[16] Zeng, H., Wang, Y., Huang, K., Feng, S., et. al.Interfacial Engineering of TiO2/Ti3C2 MXene/Carbon Nitride Hybrids Boosting Charge Transfer for Efficient Photocatalytic Hydrogen Evolution. Adv. Energy Mater. 2021, 2102765. 

[17] Jun Chen, Si-Jia Wu, Wen-Jun Cui, et al. Nickel clusters accelerating hierarchical zinc indium sulfide nanoflowers for unprecedented visible-light hydrogen production. Journal of Colloid and Interface Science 2022, 608, 504-512. 

[18] Xu C, Li D, Liu X, et al. Direct Z-scheme construction of g-C3N4 quantum dots/TiO2 nanoflakes for efficient photocatalysis. Chemical Engineering Journal, 2021: 132861. 

[19] Chengqun Xu*Chengqun Xu, Xiaolu Liu, Dezhi Li, Zeyuan Chen, Jiale Yang, Janjer Huang, and Hui Pan*,Coordination of π-Delocalization in g-C3N4 for Efficient Photocatalytic Hydrogen Evolution under Visible Light,ACS Appl. Mater. Interfaces 2021, 13, 17,20114–20124. 

[20] Xue Ma, Hefa Cheng*, Facet-Dependent Photocatalytic H2O2 Production of Single Phase Ag3PO4 and Z-scheme Ag/ZnFe2O4-Ag-Ag3PO4 Composites. Chemical Engineering Journal, 429 (2022) 132373. 

[21] Wenling Zhao et. al. Unblocked intramolecular charge transfer for enhanced CO2 photoreduction enabled by an imidazolium-based ionic conjugated microporous polymer. Applied Catalysis B: Environmental 2021, 300, 120719.

[22] Yuanyuan Li, Shengli Zhu, Xiangchen Kong, Yanqin Liang, Zhaoyang Li, Shuilin Wu, Chuntao Chang, Shuiyuan Luo, Zhenduo Cui, ZIF-67 Derived Co@NC/g-C3N4 as a Photocatalyst for Enhanced Water Splitting H2 Evolution. Environmental Research. 2021, 197: 111002. 

[23] Yonggang Lei, Xingwang Wu, Shuhui Li, Jianying Huang, Kim Hoong Ng, YuekunLai*. Noble-metal-free metallic MoC combined with CdS for enhanced visible-light-driven photocatalytic hydrogen evolution. Journal of Cleaner Production, 2021, 322, 129018. 

[24] W. Zhou, S. Lu, X. Chen, Anionic donor-acceptor conjugated polymer dots/g-C3N4 nanosheets heterojunction: high efficiency and excellent stability for co-catalyst-free photocatalytic hydrogen evolution, Journal of Colloid and Interface Science (2021)

[25] Zhang, Zhenzong, Yuxin Cao, Fenghao Zhang, et. al. Tungsten Oxide Quantum Dots Deposited onto Ultrathin CdIn2S4 Nanosheets for Efficient S-Scheme Photocatalytic CO2 Reduction Via Cascade Charge Transfer." Chemical Engineering Journal 2022, 428, 131218. 

[26] Sihui Xiang, Chong Zhang, Jiaxing Jiang et. al. Structure evolution of thiophene-containing conjugated polymer photocatalysts for high-efficiency photocatalytic hydrogen production. Science China Materals 2021.

[27] Mo-O-Bi Bonds as Interfacial Electron Transport Bridges to Fuel CO2 Photoreduction Via In-Situ Reconstruction of Black Bi2MoO6/BiO2-x Heterojunction

[28] Yu-Bo Hu, Yu-Xiang Liu, Jun Wu, Yu-Da Li, Jia-Xing Jiang, Feng Wang, A Case Study on a Soluble Dibenzothiophene-S,S-dioxide-Based Conjugated Polyelectrolyte for Photocatalytic Hydrogen Production:The Film versus the Bulk Material, ACS Materials & Interfaces, 2021, 13, 36, 42753-42762.

[29] Hanbo Yu, Jinhui Huang, Longbo Jiang et. al. In situ construction of Sn-doped structurally compatible heterojunction with enhanced interfacial electric field for photocatalytic pollutants removal and CO2 reduction. Applied Catalysis B: Environmental, 2021, 298, 120618.

[30] Yonggang Lei, Yingzhen Zhang, Zengxing Li, Shen Xu, Jianying Huang, Kim Hoong Ng, Yuekun Lai*. Molybdenum sulfde cocatalyst activation upon photodeposition of cobalt for improved photocatalytic hydrogen production activity of ZnCdS. Chemical Engineering Journal 2021, 425, 131478.

[31] Wang, X., Wang, X., Huang, J. et al. Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat .Commun .12, 4112 (2021).

[32] Bocheng Qiu, Cheng Lian, and Jinlong Zhang et. al. Realization of all-in-one hydrogen-evolving photocatalysts via selective atomic substitution. Applied Catalysis B: Environmental, 2021, 298, 120518.

[33] Chi Ma, Jingjing Wei, Kainian Jiang et. al. Self-assembled micro-flowers of ultrathin Au/BiOCOOH nanosheets photocatalytic degradation of tetracycline hydrochloride and reduction of CO2. Chemosphere 2021, 283, 131228.

[34] Chunmei Li, Huihui Wu, Daqiang Zhu, Tingxu Zhou, MingYan, Gang Chen, Jingxue Sun, Gang Dai, Fei Ge, Hongjun Dong*, High-efficientcharge separation driven directionally by pyridine rings grafted on carbonnitride edge for boosting photocatalytic hydrogen evolution, Applied Catalysis B: Environmental 297 (2021) 120433.

[35] Hongqiang Jin, Yu Yu, Qikai Shen et. al. Directly Synthesis of 1T-phase MoS2 Nanosheets with Abundance Sulfur-Vacancies through (CH3)4N+ Cations-Intercalation for Hydrogen Evolution. J. Mater. Chem. A, 2021, Accepted Manuscript.

[36] Zhao H, Yu X, Li C F, et al. Carbon quantum dots modified TiO2 composites for hydrogen production and selective glucose photoreforming. Journal of Energy Chemistry, 2022, 64: 201-208.

[37] Erhuan Zhang, Jia Liu, Jiatao Zhang et. al.Visually Resolving the Direct Z-Scheme Heterojunction in CdS@ZnIn2S4 Hollow Cubes for Photocatalytic Evolution of H2 and H2O2 from Pure Water. Applied Catalysis B: Environmental. 293 (2021) 120213.

[38] Guangbo Wang, Yan Geng, Yubin Dong et. al. Rational design of benzodifuran-functionalized donor–acceptor covalent organic frameworks for photocatalytic hydrogen evolution from water. Chemical Communications 2021, doi.org/10.1039/D1CC00854D.

[39] Kou M, Liu W, Wang Y, et al. Photocatalytic  CO2 Conversion Over Single-atom MoN2 Sites of Covalent Organic Framework. Applied Catalysis B: Environmental, 2021, 291, 120146.

[40] Heng Yang, Chao Yang, Nannan Zhang, Kaili Mo, Qin Li, Kangle Lv*, Jiajie Fan, Lili Wen*, Drastic promotion of the photoreactivity of MOF ultrathin nanosheets towards hydrogen production by deposition with CdS nanorods. Applied Catalysis B: Environmental, 2021, 285, 119801. 

[41] Chao Peng, Xi Xie, Wenkang Xu et. al. Engineering highly active Ag/Nb2O5@Nb2CTx (MXene) photocatalysts via steering charge kinetics strategy. Chemical Engineering Journal 2021, https://doi.org/10.1016/j.cej.2021.128766

[42] Fengyu Tian,Honglei Zhang,Shuai Liu,TaoWu,Jiahui Yu,Dihua Wang,Xianbo Jin,Chuang Peng*,Visible-light-driven CO2 reduction to ethylene on CdS: Enabled by structural relaxation-induced intermediate dimerization and enhanced by ZIF-8 coating. Appl. Catal. B: Environ. 2020. https://doi.org/10.1016/j.apcatb.2020.119834

[43] Metal-Organic Frameworks Decorated Cuprous Oxide Nanowires for Long-lived Charges Applied in Selective Photocatalytic CO2 Reduction to CH4Hao Wu,Xin Ying Kong,Xiaoming Wen,Siang-Piao Chai,Emma C. Lovell,Junwang Tang,Yun Hau Ng

[44] JunLi,BaojingHuang,QiangGuo,ShengGuo,ZhikunPeng,JinLiu,QingyongTina,YongpengYang,QunXu,ZhongyiLiu,BinLiu,Van der Waals heterojunction for selective visible-light-driven photocatalytic CO2 reduction,Applied Catalysis B: Environmental,2021, 119733

[45] Dr. Junqing Yan ,Dr. Yujin Ji  ,Dr. Munkhbayar Batmunkh  ,Dr. Pengfei An  ,Dr. Jing Zhang  ,Yang Fu  ,Prof. Baohua Jia  ,Prof. Youyong Li  ,Prof. Shengzhong Liu  ,Prof. Jinhua Ye  ,Prof. Tianyi Ma,Breaking Platinum Nanoparticles to Single‐Atomic Pt‐C4 Co‐catalysts for Enhanced Solar‐to‐Hydrogen Conversion, Angewandte Chemie-International Edition

[46] Ke Guo, Xiaoli Zhu, Lianlian Peng, Yanghe Fu*, Rui Ma, Xinqing Lu, Fumin Zhang, Weidong Zhu*, Maohong Fan*, Boosting photocatalytic CO2 reduction over a covalent organic framework decorated with ruthenium nanoparticles. Chemical Engineering Journal 2021, 405, 127011

[47]  L. Wang, L. Xie, W. Zhao, S. Liu, Q. Zhao, Oxygen-facilitated dynamic active-site generation on strained MoS2 during photo-catalytic hydrogen evolution, Chemical Engineering Journal 405 (2021) 127028.

[48] Yunxiang Li,shengyao Wang,Xu-sheng Wang,Yu He,Qi Wang,Yingbo Li,Mengli Li,Gaoliang Yang,Jundong Yi,Huiwen Lin,Dekang Huang,Lan Li,Hao Chen,and Jinhua Ye. Facile Top-Down Strategy for Direct Metal Atomization and Coordination Achieving a High Turnover Number in CO2 Photoreduction. Journal of the American Chemical Society

[49] Changfa Guo, Lei Li, Fang Chen, Jiqiang Ning, Yijun Zhong, Yong Hu,One-step phosphorization preparation of gradient-P-doped CdS/CoP hybrid nanorods having multiple channel charge separation for photocatalytic reduction of water, Journal of Colloid and Interface Science 2021, 596, 431-441.

[50] Wang X, Wang X, et al. nterfacial engineering improved internal electric field contributing to direct Z-scheme-dominated mechanism over CdSe/SL-ZnIn2S4/MoSe2 heterojunction for efficient photocatalytic hydrogen. Chemical Engineering Journal 431 (2022) 134000

[51] X. Zhan, Z. Fang, B. Li, H. Zhang, L. Xu, H. Hou, W. Yang, Rationally designed Ta3N5@ReS2 heterojunctions for promoted photocatalytic hydrogen production, J. Mater. Chem. A. 2021, 9, 27084-27094.

[52] Xingwang Zhu,Xingwang Zhu, Guli Zhou, Jianjian Yi, Penghui Ding, Jinman Yang, Kang Zhong, Yanhua Song*, Yingjie Hua, Xianglin Zhu, Junjie Yuan*, Yuanbin She, Huaming Li, and Hui Xu*,Accelerated Photoreduction of CO2 to CO over a Stable Heterostructure with a Seamless Interface,ACS Appl. Mater. Interfaces 2021, 13, 33, 39523–39532.

[53] Homogeneous carbon/potassium-incorporation strategy for synthesizing red polymeric carbon nitride capable of near-infrared-photocatalytic H2 production, Advanced Materials, 2021, DOI: 10.1002/adma.202101455.

[54] Sheng, Y., Li, W., Zhu, Y., & Zhang, L. (2021). Ultrathin Perylene Imide Nanosheet with Fast Charge Transfer Enhances Photocatalytic Performance. Applied Catalysis B: Environmental, 120585.

[55] Xingwang Zhu,Yitao Cao,Yanhua Song,Jinman Yang,Xiaojie She,Zhao Mo,Yuanbin She,Qing Yu,Xianglin Zhu,Junjie Yuan,Huaming Li,Hui Xu,Unique Dual-Sites Boosting Overall CO2 Photoconversion by Hierarchical Electron Harvesters,Small, 2021,2103796

[56] Bin Wang, Junze Zhao, Hailong Chen, Yu-Xiang Weng, Hua Tang, Ziran Chen, Wenshuai Zhu, Yuanbin She, Jiexiang Xia, Huaming Li, Unique Z-scheme carbonized polymer dots/Bi4O5Br2 hybrids for efficiently boosting photocatalytic CO2 reduction, Applied Catalysis B: Environmental 293 (2021) 120182.

[57] Lei Li, Changfa Guo, Jiqiang Ning, Yijun Zhong, Deli Chen and Yong Hu, Oxygen-vacancy-assisted construction of FeOOH/CdS heterostructure as an efficient ifunctional photocatalyst for CO2 conversion and water oxidation, Applied Catalysis B: Environmental.

[58] XupengZong,LijuanNiu,WenshuaiJiang,YanminYu,LiAn,DanQu,XiayanWang,ZaichengSun,Constructing creatinine-derived moiety as donor block for carbon nitride photocatalyst with extended absorption and spatial charge separation,Applied Catalysis B: Environmental,2021, 120099

[59] Heng Zhao, Jing Liu, Chao-Fan Li, Xu Zhang, Yu Li,* Zhi-Yi Hu, Bei Li,* Zhangxin Chen, Jinguang Hu,* and Bao-Lian Su*,Meso-Microporous Nanosheet-Constructed 3DOM Perovskites for Remarkable Photocatalytic Hydrogen Production,Advanced Functional Materials,10.1002/adfm.202112831

[60] Z. Li, Y. Mao, Y.Huang, D. Wei, M. Chen, Y. Huang, B. Jin, X. Luo and Z. Liang, Catal. Sci. Technol., 2022, DOI:10.1039/D2CY00085G.

[61] Weixin Huang, Zhipeng Li, Chao Wu, Hanjie Zhang, Jie Sun, Qin Li,Delaminating Ti3C2 MXene by blossom of ZnIn2S4 microflowers for noble-metal-free photocatalytic hydrogen production,Journal of Materials Science & Technology 120(2022)89-98

[62] Haiyang Wang,Ranran Niu, Jianhui Liu, Sheng Guo, Yongpeng Yang, Zhongyi Liu, and Jun Li,Electrostatic self-assembly of 2D/2D CoWO4/g-C3N4 p-n heterojunction for improved photocatalytic hydrogen evolution: Built-in electric field modulated charge separation and mechanism unveiling,Nano Res., 10.1007/s12274-022-4329-z

[63] Xiaodong Wan , Yuying Gao , Mesfin Eshete , Min Hu , Rongrong Pan, Hongzhi Wang , Lizhen Liu, Jia Liu , Jun Jiang , Sergio Brovelli, Jiatao Zhang ,Simultaneous harnessing of hot electrons and hot holes achieved via n-metal-p Janus plasmonic heteronanocrystals,Nano Energy 98 (2022) 107217

[64] Yu Deng, Chuan Wan, Chao Li, Yongye Wang, Xiaoyang Mu, Wei Liu, Yingping Huang,Po Keung Wong, and Liqun Ye,Synergy Effect between Facet and Zero-Valent Copper for Selectivity Photocatalytic Methane Formation from CO2ACS Catal. 2022, 12, 4526−4533

[65] Fengjie Chen , Anen He , Yarui Wang, Wanchao Yu, Haoze Chen , Fanglan Geng , Zhunjie Li , Zhen Zhou , Yong Liang , Jianjie Fu , Lixia Zhao , Yawei Wang ,Efficient photodegradation of PFOA using spherical BiOBr modified TiO2 via hole-remained oxidation mechanism,Chemosphere 298 (2022) 134176

[66] Tingxu Zhou , Pingfan Zhang , Daqiang Zhu , Shasha Cheng , Hongjun Dong , Yun Wang , Guangbo Che , Yaling Niu , Ming Yan , Chunmei Li ,Synergistic effect triggered by skeleton delocalization and edge induction of carbon nitride expedites photocatalytic hydrogen evolution,Chemical Engineering Journal 442 (2022) 136190